- 积分
- 300
- 注册时间
- 2015-11-8
- 最后登录
- 1970-1-1
- 打卡等级:无名新人
- 打卡总天数:2
- 打卡总奖励:3
|
发表于 2019-6-29 06:42:50
|
显示全部楼层
请教模型:
Ga(s)=K*ω^2/(s*(s^2+2*ζ*ω*s+ ω^2 ))
Gc(s)=Kp+Kd*s+K2*s^2
CLTF(s)=Gc(s)*Ga(s)/(1+Gc(s)*Ga(s))
下面三种说法,对不对? 第3种说法,对不对?
1 如果系统的开环增益用的mm/s/ 控制输出%,因为分母里有一个积分环节S, 那么上面模型是一个位置系统的模型。
2 如果系统的开环增益用的mm/s/ 控制输出%, 把分母里有一个积分环节S去掉, 变成
Ga(s)=K*ω^2/((s^2+2*ζ*ω*s+ ω^2 )) ,那么这个模型是一个速度控制系统的模型。
3 如果系统的开环增益用的mm/ 控制输出%, 把分母里有一个积分环节S去掉, 变成
Ga(s)=K*ω^2/((s^2+2*ζ*ω*s+ ω^2 )) ,那么这个模型是一个位置控制系统的模型。
Consulting model:
Ga(s)=K*ω^2/(s*(s^2+2*ζ*ω*s+ ω^2 ))
Gc(s)=Kp+Kd*s+K2*s^2
CLTF(s)=Gc(s)*Ga(s)/(1+Gc(s)*Ga(s))
The following three statements, right? The third statement, right?
1. If the open-loop gain of the system is controlled by mm/s/output, because there is an integral link S in the denominator, then the above model is a model of a position system.
2. If the mm/s/control output of the open-loop gain of the system is used, an integral link S in the denominator is removed and converted into
Ga(s)=K*ω^2/((s^2+2*ζ*ω*s+ ω^2 )), then this model is a model of speed (velocity)control system.
3 If the mm/control output of the open-loop gain of the system is used, an integral link S in the denominator is removed and converted into
Ga(s)=K*ω^2/((s^2+2*ζ*ω*s+ ω^2 )), then this model is a model of position control system.
|
|