- 积分
- 56
- 注册时间
- 2014-12-10
- 最后登录
- 1970-1-1
- 打卡等级:常驻居民
- 打卡总天数:533
- 打卡总奖励:2200
|
楼主 |
发表于 2019-6-1 17:02:06
|
显示全部楼层
料流调节阀系统原理图知该回路采用了回油节流调速,目的是在回油路上产生节流背压,工作平稳缓冲料流阀的开启冲击,但是此回路导致背压过高,有杆腔内的压力被增压得比系统压力高出许多。正常工作油压:第一次开启时,无杆腔18.4Mpa,有杆腔18.4Mpa,第二次开启时,无杆腔18.4Mpa,而有杆腔压力会达到35Mpa;关闭时,无杆腔10Mpa,有杆腔18.4Mpa。查找原设计选用的液控单向阀控制压力特性图,如图3。图示横坐标为液控单向阀负载压力,纵坐标为液控单向阀打开最低控制油压力,实线表示的为一般液控单向阀,虚线表示的为先导型液控单向阀(本系统没有使用)。
从液控单向阀开启实线特性曲线图可以看出:负载压力与控制油压力大致如表2所示。
从上表可知,原液控单向阀正常打开理论上控制油压力必须大于等于14.2Mpa。下面定量核算六高炉料流调节阀开启液控单向阀处控制油压力。
查阅《设计手册》得压力油P流速V=2.5~7m/s,这里取流速v=5m/s,46#液压油在32℃时的运动粘度为u=74×10-6m/s,管道内径为d=8mm,则雷诺数
==540,(当Re<Recr为层流,当Re>Recr为紊流;层流,λ=75/Re;紊流,λ=0.3164Re-0.25,圆形光滑管道Recr=2320)。
那么控制油到液控单向阀处的压力损失由公式
λ-沿程阻力系数;
l-直管长度,该处取l=20m;
d-管道内径,该处压力油管道通径为8mm;
v-油液平均流速,该处取v=5m/s;
ρ-油液密度, 取ρ=900kg/m3。
P-该处直通管前端压力为18.4Mpa,
计算得:=3.9Mpa,到达液控单向阀处的控制油压力为P后=P前-Pλ=18.4-3.9=14.5Mpa,说明液控单向阀设计选型理论上大于打开液控单向阀负载压力为35Mpa所需的最低控制油压力14.2Mpa。查阅《技术样本手册》知此阀最高工作压力为25Mpa,而现场此阀的正常工作压力是35Mpa超过其最高设计压力的40%。该液控单向阀长期超设计压力使用会致其性能降低,阀壳、阀芯出现微小的塑性变形导致阀芯移动困难。另外,油缸活塞杆第一次刚伸出的时候有杆腔液控单向阀锁住的压力为上次关闭时系统压力18.4Mpa,而油缸活塞杆需第二次伸出时液控单向阀锁住的管路压力为35Mpa。显而易见此系统控制油压力第一次打开液控单向阀很容易,但是第二次打开液控单向阀就显得十分吃力,此时如果再叠加阀壳微量变形、阀芯移动困难的阻力,那么就可能出现液控单向阀不能打开,即油缸活塞杆第一次伸出正常,停顿布料后需第二次继续伸出就不会动的故障。此隐形故障需要一定积累才出现,一旦出现,不易找到原因且处理时间较长。
经过以上分析,在不增加控制油压力的情况下,能不能顺利轻松打开液控单向阀?随着新的液压技术进步和液控单向阀结构优化,我们找到了一种卸荷型且耐压等级更高的液控单向阀——力士乐先导式液控单向阀:型号SL20PA1,其内部结构如图2(b)所示。从图3液控单向阀开启虚线特性曲线图A可以看出:负载压力与控制油压力特性如表3所示。
从表3可知料流调节阀正常工作压力达到35Mpa的时候,开启该新型液控单向阀所需的控制油压力仅为1.6Mpa,可以很轻松的导通液控单向阀开启油路。可以解决B腔压力较高单向阀难以打开的问题。从结构上看,该型号液控单向阀的特点是主阀芯在传统阀芯上又设计了一小卸荷阀(如图2(b)),当需反向打开主阀芯时,控制压力油控制活塞先把卸荷阀顶开一较小距离,使B腔与A腔连通把B腔内的压力先降下来些,之后控制活塞不需要太大的力便可将主阀芯打开,让油液实现反向流通。由于卸荷阀芯承压面积小,即使B腔压力较高,作用在小锥阀芯上的力还是较小,这种分两步开阀的方式,可大大降低反向开启所需的控制油压力。
4.5 新增加一套备用液压控制系统改造
通过以上分析,为了解决六高炉料流调节阀液压控制系统出现故障后处理时间过长影响正常生产,需要对原有控制系统进行技改。一是直接把原来系统中的液控单向阀改为新型的液控单向阀;二是新增加一套备用液压控制回路。这套备用液压回路控制原理没有改变,只是把油缸附件的单向节流阀和液控单向阀叠加集成到液压站阀台上。
优化对比两个方案,原系统直接改用新型液控单向阀能够优化和提高控制精度,但是出现故障依然需要排查时间会影响高炉生产,而且原有备件不能再使用形成浪费;直接增加一套料流阀液压控制系统,费用没有大的增加,但是出现故障时候可以直接接通油路切换控制系统继续生产,耗时少,而且备件也可以互为备用,故障可以离线排查。为了更可靠和不浪费,技改时候选用了方案二。图四为现在六高炉料流调节阀液压控制系统原理图。左边的为原液压控制系统,右边的为新增加备用液压控制系统。正常情况下把截止阀1、2、3、4打开,截止阀5、6、7、8关闭使用原液压控制系统。当原来的液压控制系统出现故障后,把截止阀1、2、3、4关闭,截止阀5、6、7、8打开料流调节阀即可正常运行,切换耗时不超5分钟,故高炉正常操作不会受到影响。
|
|