- 积分
- 992
- 注册时间
- 2014-12-4
- 最后登录
- 1970-1-1
- 打卡等级:偶尔看看
- 打卡总天数:105
- 打卡总奖励:319
|
楼主 |
发表于 2019-6-9 01:04:08
|
显示全部楼层
我需要重新翻译上面的一些文字。
“Kd - %产量/(mm / s)
Ks - 力/%产量
这里,产量是什么意思?”
Kd =(%控制输出)/(目标速度 - 实际速度)
控制输出是阀门的信号。它可以是安培或电压。 %控制输出必须转换为电压或电流。
“怎样估算系统阻尼比?以0.33为界限,什么样的系统,阻尼比大于0.33,什么样系统,小于0.33。”
阻尼比必须> 0但通常小于1。
大多数时候阻尼比在约0.3-0.4的范围内。 Bosch-Rexroth和我使用默认值0.333进行训练,但必须估算阻尼比。可以通过使输出从0到30%的控制输出突然改变来估计阻尼比。执行器将加速和过冲。
该公式在第21-1页
https://ocw.mit.edu/courses/mechanical-engineering/2-004-dynamics-and-control-ii-spring-2008/lecture-notes/lecture_21.pdf
这假设有一个反馈装置来测量速度过冲。
“如果估计不准会有什么影响?”
你问这个问题的时机是完美的。
https://www.iyeya.cn/thread-66648-2-1.html
在本主题中,我们假设开环传递函数是
G(S)= 5 /(S *(S ^ 2个+ 4个* S + 5))
如果阻尼系数减半,会发生什么?
G(S)= 5 /(S *(S ^ 2个+ 2个* S + 5))
我选择了
G(S)= 5 /(S *(S ^ 2个+ 4个* S + 5))
因为阻尼系数很高。很容易为这个开环系统找到良好的控制器增益。然而,机械阻尼是由摩擦和能量损失引起的。控制器阻尼效率更高。
这个系统
G(S)= 5 /(S *(S ^ 2个+ 2个* S + 5))
该系统摩擦较小,但难以控制。将所有闭环极点保持在稳定性较好的区域是比较困难的。我将在闭环主题中介绍这一点
I need to retranslate some of the text above.
"Kd - %产量/(mm / s)
Ks - 力/%产量
这里,产量是什么意思?"
Kd = (%control output)/(target velocity-actual velocity )
The control output is the signal to the valve. It could be amps or voltage. % control output must be converted to voltage or amperage.
"怎样估算系统阻尼比?以0.33为界限,什么样的系统,阻尼比大于0.33,什么样系统,小于0.33。"
The damping ratio must be >0 but usually less than 1.
Most of the time the damping ration is in the range of about 0.3-0.4. Bosch-Rexroth and I use a default value of 0.333 for training purposes but the damping ratio must be estimated. The damping ration can be estimated by making a sudden change in the output from 0 to 30% control output. The actuator will accelerate and overshoot.
The formula is on page 21-1
https://ocw.mit.edu/courses/mechanical-engineering/2-004-dynamics-and-control-ii-spring-2008/lecture-notes/lecture_21.pdf
This assumes there is a feedback device to measure the velocity overshoot.
"如果估计不准会有什么影响?"
Your timing for asking this question is perfect.
https://www.iyeya.cn/thread-66648-2-1.html
In this topic we assume the open loop transfer function is
G(s)=5/(s*(s^2+4*s+5))
What happens if the damping factor is reduced by one half?
G(s)=5/(s*(s^2+2*s+5))
I chose
G(s)=5/(s*(s^2+4*s+5))
because the damping factor is high. It is easy to find good controller gains for this open loop system. However, mechanical damping is caused by friction and energy loss. Damping by controller is much more efficient.
This system
G(s)=5/(s*(s^2+2*s+5))
This system less friction but it is harder to control. It is harder to keep all the closed loop poles in the area of nice stability. I will cover this in the closed loop topic.
|
|